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Abstract—The exponential growth of web-scale applications
has exposed fundamental limitations in traditional relational
databases, driving the emergence of diverse NoSQL solu-
tions. This paper provides a comprehensive survey of NoSQL
databases, examining the limitations of traditional relational
database systems that led to their development and analysing the
different families of NoSQL data models. We explore the trade-
offs between consistency, availability, and partition tolerance that
characterise different NoSQL approaches, discuss their query-
ing capabilities and performance considerations, and examine
a possible future: polyglot persistence. We’ll outline different
architectural patterns for polyglot persistence and, through
analysis of Data Access Object patterns and automated mediation
approaches, demonstrate how modern applications can leverage
multiple database technologies within unified architectures. We
conclude by analysing current limitations and identifying polyglot
persistence as a key direction for future database system design,
moving beyond one-size-fits-all approaches toward specialised
tools working in concert.

Index Terms—NoSQL, databases, scalability, data models,
distributed systems, CAP theorem, polyglot persistence

I. INTRODUCTION

The rise of Web 2.0 applications, along with the rapid
increase in data volume, velocity, and variety, has revealed
significant limitations in traditional relational database man-
agement systems (RDBMS). As organisations manage tens of
millions of customers globally and strive to sustain continuous
growth, reliability has become a critical requirement [1]. Even
minor outages can lead to substantial financial consequences.
In this context, the rigid schema structure and strict ACID
(Atomicity, Consistency, Isolation, Durability) guarantees of
relational databases have often turned into obstacles rather than
advantages [2].

This survey explores the landscape of NoSQL (”Not Only
SQL”) databases, analysing the specific challenges they ad-
dress, the various architectural approaches they utilise, and
their current limitations. We examine polyglot persistence as
an alternative to choosing either RDBMS or NoSQL exclu-
sively. We discuss different architectural patterns of polyglot
persistence and demonstrate how this approach can lead to a
more flexible and powerful architecture.

II. THE PROBLEM: LIMITATIONS OF RELATIONAL
DATABASES

Traditional relational databases face several fundamental
limitations when dealing with modern web-scale applications

and big data workloads. These limitations have led many
organisations to adopt polyglot persistence strategies [3], using
different database technologies for different aspects of their
applications rather than forcing all data through a single
system type.

A. Data Model Rigidity

Relational databases impose a strict, predefined tabular
structure that is often ill-suited for the semi-structured or
unstructured data typical in Web 2.0 applications. Consider
Twitter’s challenge of storing tweets with varying meta-
data—hashtags, mentions, media attachments, and location
data—all of which can be absent or present in different com-
binations. Traditional RDBMS would require either numerous
nullable columns or complex normalisation across multiple
tables, both creating performance and maintenance challenges.

While some modern relational database management sys-
tems (RDBMS) have introduced support for formats like JSON
[4], these formats are not part of their native storage paradigm.
However, rigid schemas do provide certain advantages. For
example, without a schema, the presentation layer, especially
in an MVC architecture [5], would have no way of determining
the format of incoming data. This situation essentially places
all responsibility for data integrity on the application rather
than the RDBMS itself [6].

B. Object-Relational Impedance Mismatch

The difficulty of transforming complex data structures from
the object-oriented programming paradigm, like graphs, trees,
or nested objects, into flat relational tables creates significant
development overhead. LinkedIn’s professional network, for
instance, requires representing multi-level relationship hierar-
chies (connections, second-degree connections, company affil-
iations) that map unnaturally to relational structures. This mis-
match often necessitates complex and performance-intensive
[7] object-relational mapping (ORM) frameworks, which add
another layer of abstraction and potential for inefficiency.

C. The Challenge of ACID in Distributed Systems

RDBMS systems are defined by their adherence to ACID
properties:

• Atomicity: All operations in a transaction succeed or
none do.



• Consistency: A transaction brings the database from one
valid state to another.

• Isolation: Concurrent transactions produce the same state
as if they were executed sequentially.

• Durability: Once a transaction is committed, it remains
so.

While these guarantees are crucial for transactional integrity,
they become a major bottleneck for horizontal scaling. En-
forcing ACID across a distributed cluster, particularly through
two-phase commit protocols, requires significant coordination
between nodes. Operations like distributed joins and locks
introduce high latency and create single points of failure,
severely impacting performance and availability as the system
scales out [2].

D. Scalability and Availability Constraints

RDBMS systems were primarily designed for vertical scal-
ing (scaling up by adding resources to a single server). They
do not scale horizontally (scaling out by distributing the load
across multiple servers) as effectively due to their normalised
data model and the aforementioned challenges of distributed
ACID guarantees. For applications requiring 99.99% uptime,
the strict consistency models of RDBMS can become limiting,
as a network partition or node failure can render parts of
the system unavailable. Systems like Amazon’s Dynamo were
explicitly designed to prioritise availability over immediate
consistency, ensuring that read and write operations complete
within milliseconds even in the face of network partitions [1].

III. NOSQL DATABASE FAMILIES

NoSQL databases address these limitations through diverse
architectural approaches. Four main families have emerged,
each optimised for specific use cases. Rather than replacing
relational databases entirely, these diverse NoSQL approaches
enable organisations to select the most appropriate tool for
each specific use case, forming the foundation for polyglot
persistence architectures.

A. Key-Value Stores

These are the simplest models, where data is addressed by
a unique key. The corresponding value is treated as an opaque
blob of data (e.g., a byte array), which the database does not
interpret.

• Architecture: A simple hash map.
• Examples: Redis [8], which keeps data in memory and

supports advanced data structures like lists and sets within
its values; Amazon DynamoDB [1].

• Use Cases: Caching, session management, real-time
leaderboards.

• Real-World Application: GitHub uses Redis for caching
user sessions and repository metadata, achieving sub-
millisecond response times for frequently accessed data.

B. Document Stores

Document stores extend the key-value concept by storing
semi-structured documents, typically in formats like JSON or
BSON. Crucially, the value (document) is not opaque; the
database understands its structure and can query based on
internal fields.

• Architecture: (Key, Document) pairs with flexible
schema.

• Examples: MongoDB [9], CouchDB, Firebase Firestore
[10].

• Use Cases: Content management, e-commerce platforms,
logging.

• Real-World Application: The Guardian newspaper uses
MongoDB to store and serve articles with varying meta-
data structures (tags, authors, multimedia content) with-
out requiring schema migrations for new content types.

C. Column-Family Stores

Inspired by Google’s BigTable [11], these stores organise
data into rows, but each row can have a different set of
columns. Columns are grouped into predefined ”column fam-
ilies.” This architecture creates a sparse, distributed, persistent
multidimensional sorted map.

• Architecture: A two-level map structure: a row key maps
to column families, which in turn maps column names to
values.

• Examples: Apache Cassandra [12], HBase.
• Use Cases: Write-heavy workloads, time-series data, IoT,

large-scale messaging.
• Real-World Application: Netflix uses Cassandra to store

viewing histories and recommendations for over 200 mil-
lion users, handling millions of writes per second across
global data centers while maintaining 99.99% availability.

D. Graph Databases

Graph databases are designed for highly interconnected
data. Relationships (edges) are treated as first-class citizens,
just like the data entities (nodes). Both nodes and edges can
have properties, enabling the efficient execution of queries that
traverse complex relationship networks [13].

• Architecture: Nodes, relationships, and properties form
a Property Graph.

• Examples: Neo4j [14], JanusGraph.
• Use Cases: Social networks, recommendation engines,

fraud detection, network topology.
• Real-World Application: LinkedIn uses graph databases

to power their ”People You May Know” feature, effi-
ciently traversing relationship networks to suggest con-
nections based on mutual contacts, shared employers, and
educational backgrounds.

IV. CONSISTENCY, AVAILABILITY, AND THE CAP
THEOREM

A fundamental concept in distributed systems is the CAP
theorem, first formally proven by Gilbert and Lynch [15],



TABLE I
COMPARISON OF NOSQL DATABASE FAMILIES

Category Key-Value Document Column-Family Graph

Data Model (Key, Opaque Value) (Key, Interpreted Document) Rows with column families Nodes, Edges, Properties
Schema Schema-less Flexible schema per document Predefined families, flexible columns Flexible schema per node/edge
Primary Query By key By key or document content By row key or column range Graph traversal (e.g., Cypher, Gremlin)
Use Cases Caching, sessions Content mgmt, logs Big data, IoT, writes Social networks, fraud detection
Examples Redis, DynamoDB MongoDB, CouchDB Cassandra, HBase Neo4j, JanusGraph

which states that it is impossible for a distributed data store
to provide more than two of the following three guarantees
simultaneously:

• Consistency (C): Every read receives the most recent
write or an error.

• Availability (A): Every request receives a (non-error)
response, without the guarantee that it contains the most
recent write.

• Partition Tolerance (P): The system continues to operate
despite an arbitrary number of messages being dropped
(or delayed) by the network between nodes.

Since network partitions are a reality in any large-scale
distributed system, the trade-off is effectively between Con-
sistency and Availability. The theorem has evolved to be
understood less as a strict binary choice and more as a
spectrum of trade-offs that system designers must navigate
[16]. Many NoSQL systems are designed as AP systems, pri-
oritising availability by relaxing strong consistency in favour
of eventual consistency.

A. Tunable Consistency and Eventual Consistency

Rather than a binary choice, modern NoSQL systems like
Cassandra offer tunable consistency [12]. Developers can
specify the required consistency level on a per-operation
basis, balancing latency and data correctness. Common levels
include:

• ONE: Ensures the write is sent to at least one replica.
Fastest but least consistent.

• QUORUM: Requires a majority of replicas ((N/2) + 1,
where N is the replication factor) to acknowledge the
operation. This provides a strong guarantee of consistency
if the condition R+W > N is met (where R and W are
the number of nodes for read and write quorums).

• ALL: Requires all replicas to acknowledge. Strongest
consistency but lowest availability.

Facebook’s approach illustrates practical CAP theorem
trade-offs: their social graph prioritises availability (users
can always post content) over immediate consistency (friends
might see posts at slightly different times), while their financial
systems prioritise consistency for payment processing.

B. Mechanisms for Achieving Eventual Consistency

AP systems use several mechanisms to converge on a
consistent state over time:

• Hinted Handoff: If a node is down during a write, a
coordinator node stores a ”hint” and delivers the write
when the target node recovers.

• Read Repair: During a read request, the coordinator can
detect inconsistencies among replicas and repair the stale
data in the background.

• Anti-Entropy (Merkle Trees): Nodes periodically com-
pare their data using Merkle trees—a hash tree over
key ranges—to efficiently identify and synchronise dif-
ferences without transferring the entire dataset.

V. LIMITATIONS AND ONGOING CHALLENGES

Despite their advantages, NoSQL databases face several sig-
nificant challenges that limit their adoption and effectiveness.

A. Querying and Data Access

The absence of a standardised query language represents
one of the most significant barriers to NoSQL adoption.
Unlike relational databases with SQL, each NoSQL system
implements proprietary APIs or query languages—MongoDB
uses its Query API [9], while Neo4j employs Cypher [14]. This
fragmentation creates steep learning curves and increases the
risk of vendor lock-in [17].

Several standardisation efforts have emerged to address this
challenge. Generic abstraction APIs like SOS [18] attempt to
decouple application logic from specific database choices, but
their broad compatibility comes at the cost of limited expres-
sivity, offering only basic GET, PUT, and DELETE endpoints.
More specialised approaches show greater promise: SPARQL
[19] provides SQL-like expressiveness for graph databases and
has achieved successful standardisation by major institutions
[20], though its scope remains limited to a single database
model.

The querying limitations extend beyond language stan-
dardisation. Operations that are simple in SQL, such as ad-
hoc joins across different entities, can become complex or
even impossible in NoSQL systems. Developers often have to
implement architectural workarounds, each of which comes
with its own trade-offs:

• Data Denormalisation: Embedding related data within a
single document reduces query complexity but introduces
data redundancy and can lead to update anomalies.

• Application-Side Joins: Executing multiple queries and
combining the results in application code shifts some
of the database complexities to developers, which may
negatively impact performance.



While initiatives to create uniform interfaces continue [18],
[21], these solutions often introduce performance overhead
and cannot fully abstract fundamental differences between data
models. Consequently, architectural approaches have emerged
to manage this complexity.

1) Data Access Patterns and Abstraction Layers: Beyond
query language standardisation, architectural patterns have
emerged to manage the complexity of diverse data stores. Data
Access Objects (DAOs) serve as abstraction layers between ap-
plication logic and database implementations, enabling greater
flexibility in database selection and migration.

Pereira et al. [22] identify three primary patterns for imple-
menting polyglot persistence:

• Independent DAO: Business logic directly calls separate
DAOs for each database type, maintaining explicit control
but increasing coupling.

• Integrated Polyglot DAO: A unified DAO interface
handles multiple database types internally, simplifying
business logic at the cost of increased DAO complexity.

• Mediated DAO: A mediator component routes opera-
tions to appropriate DAOs based on data characteristics
or performance requirements, similar to the automated
approaches discussed below.

These patterns address similar challenges to the generic
APIs discussed earlier but focus on architectural flexibility
rather than query language uniformity.

2) Automated Polyglot Persistence: Recent research has
explored automating database selection decisions to reduce the
operational overhead of managing multiple database systems.
Schaarschmidt et al. [23] propose a Polyglot Persistence
Mediator (PPM) that makes runtime routing decisions based
on service level agreements and schema-based annotations.
Their evaluation demonstrated 50-100% write performance
improvements and reduced read latencies by automatically
directing operations to the most suitable backend.

This automated approach addresses a key barrier to polyglot
adoption: the expertise required to effectively manage multi-
ple database systems. However, it introduces new challenges
around mediator complexity, metadata management, and the
need for sophisticated routing algorithms that understand
workload characteristics.

B. Performance Considerations

NoSQL systems are not universally faster than RDBMS.
Performance in database systems is fundamentally workload-
dependent, making the choice between RDBMS and NoSQL a
matter of matching system characteristics to specific require-
ments rather than assuming universal superiority.

1) Workload-Dependent Performance Characteristics:
While NoSQL excels at high-throughput writes and simple
reads by key, RDBMS often outperforms on complex analyt-
ical queries due to mature query optimisers [24]. The Yahoo!
Cloud Serving Benchmark (YCSB) [25] provides standardised
workloads for evaluating performance across different sys-
tems, revealing significant variations based on access patterns:

• Read-Heavy Workloads: Traditional RDBMS systems
like MySQL demonstrate competitive read latencies,
while some NoSQL systems like Cassandra and HBase
show higher read latencies due to their write-optimised
architectures.

• Write-Heavy Workloads: NoSQL systems designed for
write optimisation, particularly Cassandra and HBase,
achieve significantly lower update latencies compared to
traditional relational systems.

• Mixed Workloads: Systems like PNUTS (Yahoo’s dis-
tributed database) demonstrate more balanced perfor-
mance across both read and write operations.

Uber’s architecture exemplifies these trade-offs: they use
Cassandra for high-write trip data, Redis for real-time driver
locations, and PostgreSQL for transactional operations like
payments, each optimised for specific workload characteristics.

2) Scalability and Elasticity Performance: YCSB evalua-
tions reveal important differences in how systems handle scale:

Horizontal Scaling: Both PNUTS and Cassandra demon-
strated effective scaling as the number of servers and work-
load increased proportionally. However, HBase exhibited more
erratic performance characteristics during scaling operations,
highlighting the importance of system-specific tuning and
operational expertise.

Elastic Growth: While Cassandra, HBase, and PNUTS
all supported elastic scaling during live workload execution,
PNUTS provided the most stable latency characteristics during
data repartitioning operations. This stability is crucial for pro-
duction systems that cannot tolerate performance degradation
during scaling events.

3) Trade-offs in System Design: The YCSB results confirm
hypothesised trade-offs between read and write optimisation in
distributed systems. Systems optimised for write throughput
(like Cassandra’s log-structured merge trees) inherently sac-
rifice some read performance, while read-optimised systems
may struggle with write-intensive workloads. This reinforces
the argument for polyglot persistence, where different systems
can be selected based on specific access patterns within the
same application.

4) Benchmark Limitations and Real-World Considerations:
While standardised benchmarks like YCSB provide valuable
comparative data, they represent simplified workloads that
may not capture the complexity of real-world applications.
Specific studies, such as the comparison between MongoDB
and Cassandra by Abramova and Bernardino [26], highlight
how performance can vary dramatically based on data scale,
query complexity, and consistency requirements. Production
performance depends heavily on factors including:

• Data distribution and hotspot patterns
• Network topology and latency characteristics
• Consistency level requirements
• Concurrent user patterns and peak load characteristics
These real-world complexities emphasise the importance

of application-specific performance testing and the value of
polyglot architectures that can adapt to diverse performance
requirements within a single system.



C. Operational Complexity

The operational expertise required to deploy, monitor, and
maintain large-scale distributed NoSQL clusters is significant
and less widely available than RDBMS expertise. Managing
eventual consistency adds application-level complexity, as
developers must account for stale reads and implement conflict
resolution logic.

VI. CONCLUSION

The evolution of database systems reflects the changing
requirements of modern applications rather than a fundamental
superiority of one approach over another. NoSQL databases
emerged to address specific challenges of scale, availability,
and data model flexibility where traditional relational systems
were not the optimal fit.

Each NoSQL family serves distinct use cases and makes
different trade-offs, particularly between consistency and avail-
ability. Database choice should be driven by careful analysis
of application requirements—data structure, query patterns,
scalability needs, and transactional guarantees—rather than by
general assumptions about performance.

The future of data management lies in ”polyglot persis-
tence,” where different database technologies are leveraged for
specific tasks within the same application ecosystem [3]. As
demonstrated by the DAO patterns [22] and automated medi-
ation approaches [23], architectural solutions are emerging to
manage the complexity of such heterogeneous environments.
These patterns enable organisations to leverage the strengths of
both relational and non-relational systems while mitigating the
operational overhead through abstraction layers and intelligent
routing mechanisms.

This approach aligns with the long-standing argument that a
”one size fits all” approach to database systems is suboptimal
[27]. By understanding the deep technical trade-offs, including
the operational complexities discussed, and by employing
appropriate architectural patterns, we can build more robust,
performant, and maintainable systems that adapt to diverse
data requirements [17].
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